Existence of periodic solutions of fourth-order nonlinear difference equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Periodic Solutions for Higher-order Nonlinear Difference Equations

In this article, we study a higher-order nonlinear difference equation. By using critical point theory, we establish sufficient conditions for the existence of periodic solutions.

متن کامل

Existence and Uniqueness on Periodic Solutions of Fourth-order Nonlinear Differential Equations∗

In this paper, we study the problem of periodic solutions for fourth-order nonlinear differential equations. Under proper conditions, we employ a novel proof to establish some criteria to ensure the existence and uniqueness of T -periodic solutions. Moreover, we give two examples to illustrate the effectiveness of our main results.

متن کامل

Periodic Solutions for Some Fully Nonlinear Fourth Order Differential Equations

In this paper we present sufficient conditions for the existence of solutions to the periodic fourth order boundary value problem u(x) = f(x, u(x), u′(x), u′′(x), u′′′(x)) u(a) = u(b), i = 0, 1, 2, 3, for x ∈ [a, b], and f : [a, b] × R4 → R a continuous function. To the best of our knowledge it is the first time where this type of general nonlinearities is considered in fourth order equations w...

متن کامل

EXISTENCE OF PERIODIC SOLUTIONS OF 2α-ORDER NONLINEAR FUNCTIONAL DIFFERENCE EQUATIONS WITH p−LAPLACIAN

The existence of periodic solutions of a higher order nonlinear functional difference equation with p-Laplacian is studied. Sufficient conditions for the existence of periodic solutions of such equation are established. The result is based on Mawhin′s continuation theorem. The methods used to estimate the priori bound on periodic solutions are very technical.

متن کامل

Periodic Solutions of Second Order Nonlinear Functional Difference Equations

The development of the study of periodic solution of functional difference equations is relatively rapid. There has been many approaches to study periodic solutions of difference equations, such as critical point theory, fixed point theorems in Banach spaces or in cones of Banach spaces, coincidence degree theory, KaplanYorke method, and so on, one may see [3-7,11,13-15] and the references ther...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas

سال: 2013

ISSN: 1578-7303,1579-1505

DOI: 10.1007/s13398-013-0143-5